Pythagoras [Samos, 582 - 500 BC]
Like Thales, Pythagoras is rather known for mathematics than for
philosophy. Anyone who can recall math classes will remember the first
lessons of plane geometry that usually start with the Pythagorean
theorem about right-angled triangles: a²+b²=c². In spite of its name,
the Pythagorean theorem was not discovered by Pythagoras. The earliest
known formulation of the theorem was written down by the Indian
mathematician Baudhāyana in 800BC. The principle was also known to the
earlier Egyptian and the Babylonian master builders. However, Pythagoras
may have proved the theorem and popularised it in the Greek world. With
it, his name and his philosophy have survived the turbulences of
history.
His immediate followers were strongly influenced by him, and even
until today Pythagoras shines through the mist of ages as one of the
brightest figures of early Greek antiquity. The Pythagorean theorem is
often cited as the beginning of mathematics in Western culture, and ever
since mathematics -the art of demonstrative and deductive reasoning-
has had a profound influence on Western philosophy, which can be
observed down to Russell and Wittgenstein.
Pythagoras’ influence found an expression in visual art and music
as well, particularly in the renaissance and baroque epoch. The
far-reaching imprint of his ideas is yet more impressive if we consider
that he did not leave any original writings. Instead, all what is known
about Pythagoras was handed down by generations of philosophers and
historiographers, some of whom, like Heraclitus, opposed his views. In
this light it is remarkable that Pythagoras’ teachings have survived
relatively undistorted until the present day.
Pythagoras was a native of the island of Samos. During his early
life, Samos was governed by the powerful, unscrupulous tyrant
Polycrates. Pythagoras did not sympathise with his government and thus
emigrated to Croton in Southern Italy. Like the ancient Greek cities in
Ionia, Croton was a flourishing commercial city that lived from
importing and exporting goods. Obviously it was in Croton where
Pythagoras developed most of his important ideas and theories.
Pythagoras founded a society of disciples which has been very
influential for some time. Men and women in the society were treated
equally -an unusual thing at the time- and all property was held in
common. Members of the society practised the master’s teachings, a
religion the tenets of which included the transmigration of souls and
the sinfulness of eating beans. Pythagoras’ followers had to obey strict
religious orders where it was forbidden to eat beans, to touch white
cocks, or to look into a mirror beside a light.
If all of this seems a bit odd, it might lead us to suspect that
Pythagoras’ personality reflects the inseparable blend of genius and
madness that we associate with many other great men. It is said that
once Pythagoras was walking up a lane in Croton when he came by a dog
being ill-treated. Seeing this he raised his voice: “Stop, don’t hit it!
It is a soul of a friend. I knew it when I heard its voice.” Spirits,
ghosts, souls, and transmigration were obviously things he believed in
deeply.
There was an opposition -if not rivalry- in ancient Greece between
the gods of the Olympus and the lesser gods of more primitive
religions. Pythagoras, like no other, embodied the contradistinctions of
the mystical and rational world, which is woven into his personality
and philosophy. In his mind, numbers, spirits, souls, gods and the
mystic connections between them formed one big picture. The following
text tells the legend of his own existences:
“He was once born as Aethalides and was considered to be the son
of Hermes. Hermes invited him to choose whatever he wanted, except
immortality; so he asked that, alive and dead, he should remember what
happened to him. Thus, in life he remembered everything, and when he
died he retained the same memories. [...] He remembered everything - how
he first had been Aethalides, then Euphorbus, then Hermotimus, then
Pyrrhus, the Delian fisherman. When Pyrrhus died, he became Pythagoras.”
(Diogenes Laertius, Live of Philosophers, VIII 4-5)
“Pythagoras believed in metempsychosis and thought that eating
meat was an abominable thing, saying that the souls of all animals enter
different animals after death. He himself used to say that he
remembered being, in Trojan times, Euphorbus, Panthus’ son who was
killed by Menelaus. They say that once when he was staying at Argos he
saw a shield from the spoils of Troy nailed up, and burst into tears.
When the Argives asked him the reason for his emotion, he said that he
himself had borne that shield at Troy when he was Euphorbus.
They did not believe him and judged him to be mad, but he said he
would provide a true sign that it was indeed the case: on the inside of
the shield there had been inscribed in archaic lettering EUPHORBUS.
Because of the extraordinary nature of his claim they all urged that the
shield be taken down - and it turned out that on the inside the
inscription was found.” (Diogenes Laertius)
After Pythagoras introduced the idea of eternal recurrence into
Greek thought, which was apparently motivated by his studies of earlier
Egyptian scriptures, the idea soon became popular in Greece. It was
Pythagoras’ ambition to reveal in his philosophy the validity and
structure of a higher order, the basis of the divine order, for which
souls return in a constant cycle.
This is how Pythagoras came to mathematics. It could be said that
Pythagoras saw the study of mathematics as a purifier of the soul, just
like he considered music as purifying. Pythagoras and his disciples
connected music with mathematics and found that intervals between notes
can be expressed in numerical terms. They discovered that the length of
strings of a musical instrument correspond to these intervals and that
they can be expressed in numbers. The ratio of the length of two strings
with which two tones of an octave step are produced is 2:1.
Music was not the only field that Pythagoras considered worthy of
study, in fact he saw numbers in everything. He was convinced that the
divine principles of the universe, though imperceptible to the senses,
can be expressed in terms of relationships of numbers. He therefore
reasoned that the secrets of the cosmos are revealed by pure thought,
through deduction and analytic reflection on the perceptible world.
This eventually led to the famous saying that “all things are
numbers.” Pythagoras himself spoke of square numbers and cubic numbers,
and we still use these terms, but he also spoke of oblong, triangular,
and spherical numbers. He associated numbers with form, relating
arithmetic to geometry. His greatest contribution, the proposition about
right-angled triangles, sprang from this line of thought:
“The
Egyptians had known that a triangle whose sides are 3, 4, 5 has a right
angle, but apparently the Greeks were the first to observe that
3²+4²=5², and, acting on this suggestion, to discover a proof of the
general proposition. Unfortunately for Pythagoras this theorem led at
once to the discovery of incommensurables, which appeared to disprove
his whole philosophy. In a right-angled isosceles triangle, the square
on the hypotenuse is double of the square on either side.
Let us suppose each side is an inch long; then how long is the
hypotenuse? Let us suppose its length is m/n inches. Then m²/n²=2. If m
and n have a common factor, divide it out, then either m or n must be
odd. Now m²=2n², therefore m² is even, therefore m is even, therefore n
is odd. Suppose m=2p. Then 4p²=2n², therefore n²=2p² and therefore n is
even, contra hyp. Therefore no fraction m/n will measure the hypotenuse.
The above proof is substantially that in Euclid, Book X.” (Bertrand
Russell, History of Western Philosophy)
This shows how Pythagoras’ formulation immediately led to a new
mathematical problem, namely that of incommensurables. At his time the
concept of irrational numbers was not known and it is uncertain how
Pythagoras dealt with the problem. We may surmise that he was not too
concerned about it. His religion, in absence of theological
explanations, had found a way to blend the “mystery of the divine” with
common-sense rational thought.
From Pythagoras we observe that an answer to a problem in science
may give raise to new questions. For each door we open, we find another
closed door behind it. Eventually these doors will be also be opened and
reveal answers in a new dimension of thought. A sprawling tree of
progressively complex knowledge evolves in such manner. This Hegelian
recursion, which is in fact a characteristic of scientific thought, may
or may not have been obvious to Pythagoras. In either way he stands at
the beginning of it.
Images of Pythagoras
Images of Pythagoras
No comments:
Post a Comment
Please give us your suggestions and feedback